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Abstract— An improved FD-TD technique is described
for the rigorous analysis of highly resonant 3D mi-
crowave structures, such as dielectric resonator filters.
The method is based on a recursive subgrid procedure,
utilizes a robust orthogonalization technique, and em-
ploys the matrix pencil algorithm for the frequency-
transformation. The S-parameters are extracted from
least-square-solutions of over-determined systems of
equations for each port. The efficiency and accuracy of
the presented FD-TD technique is demonstrated at the
example of LANGER’s dielectric resonator reference filter.
The analysis of modified filters with up to four dielectric
resonators illustrates the flexibility of the method.

I. INTRODUCTION

UE to its simplicity and flexibility, the finite dif-

ference time domain (FD-TD) method is well es-
tablished for solving a wide variety of electromagnetic
problems [1] - [10]. As usual microwave components,
such as filters, often include geometries of very differ-
ent shape, the numerical effort for accurate results can
be high if a uniform mesh is used. Moreover, resonant
structures, in particular, require a large number of time
steps. For rigorous microwave component simulations
with the FD-TD method, therefore, adequate and sta-
ble subgrid techniques combined with efficient modal
S-parameter extraction methods are highly desirable.

Usual graded mesh techniques [9], [10], often lead to
unnecessarily fine mesh discretizations in homogeneous
areas of low field gradients, due to the topology of the
grid. Moreover, the stable maximum time step depends
on the smallest cell used, and still rather high memory
and computation time requirements are usually neces-
sary.

Locally refined meshes have been presented in [2],
[3], [4], [5]- The reported subgrid FD-TD algorithms,
however, require additional interpolation schemes at the
grid-interfaces which often reduces the flexibility by pro-
hibiting arbitrary combinations of different sized cells.
Moreover, depending on the type of interpolation, this
can violate the divergence relations, which then results
in unstable formulations.

Fig. 1. Dielectric resonator filter example investigated with
the presented subgrid FD-TD matrix pencil technique: Four-
resonator planar filter with additional coaxial resonators and
irises.

This paper presents an advanced combination of the
generalized subgrid-technique, recently introduced by
the authors in [11], with the matrix-pencil method [12]
and with a new approach for the S-parameter extrac-
tion. Moreover, compared to earlier applications of the
matrix-pencil technique to the FD-TD method [§], in
this paper we use a different value for the so called
“pencil-parameter” which increases the convergence of
the frequency-transformation. Furthermore, improved
least-square formulations are used for the purpose of
separating the propagated and reflected waves at the
terminal ports of the structure under investigation.

Compared to the traditional approach using signals
at only 2 different waveguide cross-sections, the over-
determined least-squares problem (using typically 5
input-signals from different cross-sections) yields nat-
urally more robust results. These two enhancements
result in a further reduction of the total number of time-
steps for the FD-TD simulation, and, hence, make the
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subgrid FD-TD matrix-pencil technique a versatile, fast
and reliable simulation tool for practical filter design
applications.

The efficiency of the presented method is demon-
strated by a low CPU time for the accurate analysis of
LANGER’s two resonator reference filter [14]. The sim-
ulation of several modified filters including irises, addi-
tional coaxial resonators and up to four resonators (Fig.
1) shows the flexibility of the method. Its accuracy is
verified by comparison with available measurements.

II. THEORY

Grid generation — Based on a progressive 2 : 1
cell ratio for the subgrids [11], we use a recursive grid-
generation procedure. A given object is first subdivided
into cells of a largest level [ such that all corners of the
cell are still inside the object. To discretize the space
with the intended finer mesh, bounded by the object and
the level [ cells, the same procedure is repeated using
cells of the next finer level [ + 1, until the maximum
specified level [,,, is obtained.

From the allocated cells, two grids are derived, which
are referred to as the main and the dual grid. The main
grid is defined by the corners, and the dual grid is de-
fined by the centers of the allocated cells [11]. The dual
mesh involves quadrangular and triangular cells. The
main grid is directly orthogonalized against the dual grid
(Fig. 2). In the three dimensional (3D) case, the orthog-
onalization of the main and the dual grid is performed
analogously.
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Fig. 2. 2D subgrid generation of a FD-TD domain.

For a discretization containing cells of the maximal
level I, a total number of Y31 2! different e and h
updated computations have to be performed to proceed
one step °At = A¢2!» in time in the coarsest grid (of
level 0). This update sequence is repeated after 2/ time
steps.

In contrast to the spatial and/or temporal interpola-
tion techniques hitherto reported, the generalized sub-
grid FD-TD method presented, satisfies implicitly for
each cell — in both the main and the dual grid — the di-
vergence relation. Analogous to the standard non sub-

grid FD-TD formulation, the integral contribution of
each vertex of the cell appears twice but with different
signs so that the sum is zero. This yields for all in-
vestigated cases stable results as has been tested even
at highly resonant structures, e.g. dielectric resonator
filters, with up to several millions of time iterations.

The time step in each grid level [ is limited by the
Courant-Friedrichs-Lewy (CFL) condition [13] for the
nonorthogonal FD-TD method [6].

Matrix pencil technique — The powerful combi-
nation of the FD-TD method and the matrix pencil
technique [12], [8] is used for the full-wave analysis of
waveguide structures of more general shape. This tech-
nique avoids the drawbacks of the slow convergence of
the standard FFT formulation, and of the very small
time increments, when applied to structures which are
small compared with the wavelength.

With the data vectors a¢ of length N — L for the
noiseless signal zy,

(1)

T
Ty = [T4, Te41s - s EN—Lti—1]

the matrices Xy and X; are defined

Xo = [®r-1,Zr—2,.-.,%0] (2)
(N—L)xL

X1 = [:IIL,:BL_l,...,:Bl]. (3)
(N—L)xL

Every pole z;,t = 1,...,M reduces the rank of the
‘matrix-pencil’ X; —z; X exactly by 1 [12], if the ‘pencil-
parameter’ L is chosen to be M < L < N — M; in this
case, the matrix-pencil X; — 2; X, is of rank M — 1.
Otherwise, the rank of the matrix-pencils remains M.
Each pole is an eigenvalue of the generalized eigenvalue
problem

(4)

with non quadratic matrices. This equation is trans-
formed into a standard eigenvalue problem of a
quadratic matrix by multiplication from left with the
pseudo inverse [12] X of the matrix Xo:

(X1 — Zth) q; = 0

(Xg X1 —21) qe =0, (5)
which does not change the eigenvalues and -vectors.
Several applications of the matrix-pencil technique to
FD-TD time-signals have shown, that an optimal choice
for the pencil parameter L is about 0.46...0.48 times
the total time-steps applied. This leads to a faster con-
vergence of the spectra in terms of the total time-steps
involved.

The S-parameters are computed from the propagated
and reflected wave-amplitudes a;, b; at the terminal-
ports of the structure under investigation. Typically, the
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wave-amplitudes are obtained by separating the total
field w; at two different cross-sections.

In the present paper, a larger number (typically five)
of total-field values w; are taken into account. The re-
sulting, over-determined system of equations is solved
by means of least squares. This more robust approach
is required due to not negligible approximation errors in
the spectra computed by the matrix-pencil method.

Fig. 3. LANGER’s dielectric resonator filter. (a) Filter structure
[14]. (b) Subgrid mesh.

III. RESULTS

The described 3D FD-TD subgrid matrix pencil tech-
nique has been tested first at LANGER’s dielectric res-
onator reference filter [14], cf. Fig. 3a. The subgrid
discretization is illustrated in Fig. 3b.

Figs. 4 shows the computed S-parameters (Fig. 4a)
compared to measurements (Fig. 4b) reported in [14].
Good agreement may be stated. The CPU time for the
total simulation using the high resolution of 4000 fre-
quency sample points (Fig. 4a) was only about 40 min
on a SGI Origin 200 workstation. The spikes at about
5.8 and 6.6 GHz (Fig. 4b) are clearly reproduced.
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Fig. 4. LANGER’s dielectric resonator filter. (a) Computed S-
parameters compared to measurements (b) presented in [14].

Fig. 5a shows a planar dielectric resonator filter with
three resonators coupled by irises. In Fig. 5b, the cal-
culated scattering parameters are presented. Moreover,
the transmission coefficient S»; (solid line) is compared
with Sa; of the same filter without irises (dashed line)
illustrating the improvements concerning the spurious
behavior by the additional irises.

An example for demonstrating the flexibility of the
presented method is a four-resonator filter (Fig. 1) cou-
pled by irises and additional coaxial resonators. The
computed transmission coefficient Ss; (solid line) is
compared in Fig. 6 with Sy; of the filter without irises
(dashed line) and slightly longer coaxial resonators.
This again makes the improvements evident concern-
ing the spurious behavior by additional irises and, here,
coaxial line coupling adjustments.
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Fig. 5. Planar three resonator filter (dielectric material e, = 38).
(a) Structure. (b) Calculated S-parameters with (solid line)
and without (dashed line) additional irises.

IV. CONCLUSION

An improved, fast and stable FD-TD subgrid matrix
pencil technique is described for the rigorous analysis
of highly resonant 3D microwave structures, such as di-
electric resonator filters. The technique yields low CPU
times and improved accuracy.
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